MECHANISM OF THE REARRANGEMENT OF THE BICYCLO [4.2.0] OCTAN SYSTEM TO THE BICYCLO [3.2.1] OCTAN SYSTEM

Josette BASTARD, Duc DO KHAC^{*}, Marcel FETIZON and Chantal PREVOST Laboratoire de Synthèse Organique - Ecole Polytechnique 91128 PALAISEAU Cedex - France Jean-Claude BELOEIL, Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 GIF-sur-YVETTE - France

(Received in Belgium 24 September 1990)

Abstract : A concerted mechanism has been demonstrated for the rearrangement of a tetracyclic ion including a bicyclo [4.2.0] octan system to hibaol, using a selective deuteration on the migrating bond. The stereochemistry of the selectively introduced deuterium was determined by three routes : I) comparison of the high field ¹H NMR spectra of the deuterated and undeuterated compounds, using double irradiation; II) high field ¹H NMR, coupled with molecular mechanics calculations;

III) two dimensional homo and heteronuclear NMR.

INTRODUCTION

The mechanism of cyclisation of manool $\underline{1}$ to hibaol $\underline{2}$ was elucidated twenty years ago by Edwards (1,2), Wenkert (3,4) and Hall (5). The use of labelled compounds derived from manool $\underline{1}$ established that the formation of hibaol $\underline{2}$ occured via an intermediate tetracyclic carbocation $\underline{\lambda}$ (figure 1).

During the synthesis of hibaene $\underline{6}$, performed in our laboratory (figure 2), a conservation of the stereochemistry of the hydroxylic group in C_{16} was noticed during the solvolysis of the diols $\underline{4a}$ and $\underline{4b}$. This fact led us to examine the mechanism of the migration of bond $C_{14}-C_{15}$ to bond $C_{13}-C_{15}$.

Figure 2

In order to avoid any interference in the mechanism due to solvatation effects, the study was performed on the compounds $\underline{9a}^*$ and $\underline{9b}^*$, stereoselectively deuterated on the carbons C_{15} and C_{16} (figure 3) :

RESULTS AND DISCUSSION

The synthesis of the deuterated tertiary alcohols $\underline{9a}^*$ and $\underline{9b}^*$ was carried out according to scheme 3, from $\Delta^{8(14)}$ podocarpenone-13, $\underline{3}$ (7). The first step, a photochemically induced cycloaddition of acetylene to the α,β -unsaturated ketone $\underline{3}$ led to the ketone $\underline{7}$. As shown previously in our laboratory (6,7), the addition occurred specifically on the β side of $\underline{3}$.

Ketone $\underline{7}$ was then subjected to the action of methyl magnesium iodide, yielding a mixture of the alcohols <u>8a</u> and <u>8b</u>, which was easy to separate. With methyl lithium as a reagent, isomer <u>8b</u> was obtained as a major product (80% of the mixture).

The addition of deuterium was performed independently on <u>8a</u> and <u>8b</u>, in the presence of Wilkinson's catalyst $RhCl(PPh_3)_3$ which is known to give exclusively cis additions (8,9).

Selectivity of the addition of deuterium on <u>8a</u> and <u>8b</u>

The selectivity of addition was demonstrated by studying the deuteration products of <u>8a</u> and <u>8b</u> by ²H NMR (figure 4) :

- only two resonance signals were observed on the ²H NMR spectrum of the <u>8a</u> deuteration product (respectively at 1.39 and 2.03 ppm); this indicates that the deuterium addition occured with a total stereoselectivity, leading to a single compound <u>9a</u>*;
- the <u>8b</u> deuteration product spectrum presents two main resonance signals, at 1.44 and 1.94 ppm, accompanied by two minor ones, in a 95/5 ratio ; the minor isomeric compound <u>9c</u>^{*} could not be detected in the ¹H NMR or the ¹³C NMR spectra. It can be concluded that the deuterium addition occured preferentially on one side, giving way to a major compound <u>9b</u>^{*} and a minor one <u>9c</u>^{*}.

²H NMR spectra of $\underline{9}_{a}^{*}$ and $(\underline{9}_{b}^{*}+\underline{9}_{c}^{*})$ Figure 4

A stereochemistry α for the two deuterium was established by a high resolution ¹H NMR study performed on <u>9b</u>^{*} (14) (<u>9c</u>^{*} could not be detected on the spectrum). This study included a comparison with the non deuterated analog spectrum, the use of the double irradiation technique, and a bidimensional NMR study (16).

Mechanism of rearrangement of the tetracyclic carbocation A

The preliminary formation of the carbocation <u>A</u> in C_{13} was demonstrated previously in our laboratory (7) (figure 5) :

Formolysis of $\underline{9a}^*$ and $(\underline{9b}^* + \underline{9c}^*)$ might involve, after this first step, a concerted or a non-concerted mechanism : the second hypothesis implies that each of the alcohols $\underline{9a}^*$ and $(\underline{9b}^* + \underline{9c}^*)$ could lead to a mixture of four stereoisomeric compounds (as far as deuterium is concerned) (figure 6a) ; while the first hypothesis presumes a conservation of the deuterium stereochemistry (figure 6b).

a) non concerted mechanism

b) concerted mechanism

The rearrangement reaction was performed on $9a^*$ and $(9b^* + 9c^*)$ respectively. A ²H NMR analysis showed that the precursors characteristics had been preserved : the $(9b^* + 9c^*)$ rearrangement product spectrum presents two main signals at 1.20 and 0.96 ppm and two secondary ones, respectively attributed to compounds $10b^*$ (product of $9b^*$) and $10c^*$ (product of $9c^*$); whereas only two signals are visible on the spectrum of $10a^*$, the single rearrangement product of $9a^*$ (figure 7).

Moreover, the ²H NMR signals of <u>10a</u>^{*} coincide remarkably well with those of <u>10b</u>^{*}. A comparison of the ¹H NMR and ¹³C NMR spectra of <u>10a</u>^{*} and (<u>10b</u>^{*} + <u>10c</u>^{*}) clearly demonstrates the identity of <u>10a</u>^{*} and <u>10b</u>^{*} (the two spectra present a perfect superposition, and <u>10c</u>^{*} could not be detected in either case).

²H NMR of $9_{a}^{*}, (9_{b}^{*}+9_{c}^{*}), (10_{b}^{*}+10_{c}^{*}), 10_{a}^{*}$ Figure 7

Since isomerism did not occur during the migration of the $C_{14}-C_{15}$ to $C_{13}-C_{15}$ bond, it was concluded that the mechanism of ion <u>A</u> rearrangement is concerted.

In addition, the identity of $10a^*$ and $10b^*$ confirmed that the previous deuterium addition on <u>8a</u> and <u>8b</u> had occurred principally on the same side of the cyclobutane ring.

CONCLUSIONS

Using a selective deuteration on the cyclobutenic moiety of the alcohols <u>8a</u> and <u>8b</u>, it was established that the mechanism of rearrangement of the bicyclo [4.2.0] octan system of carbocation A to a bicyclo [3.2.1] octan system, is concerted.

A stereochemistry α was evidenced for the selective attack of the deuterium on each of the alcohols <u>8a</u> and <u>8b</u>.

This stereochemistry had been hoped for, considering the characteristics of action of the Wilkinson's catalyst : in addition to the fact that only cis additions are permitted, a great sensibility to steric interactions have been described in the literature. We therefore performed the addition on the methyl-16,hydroxyl-16 derivative $\underline{8}$, instead of its ketonic procursor $\underline{7}$, in order to increase the difficulty of approach by the β -side.

The experimental results thus confirmed our suppositions. The presence of a minor isomer in $\underline{9b}^*$, deuterated on the β side, can be attributed to the possibility of a partial adsorption of the β hydroxy-16 on the complex RhCl(PPh₃)₃ (9).

EXPERIMENTAL PART

The infrared spectra (CCl₄) were measured on a PERKIN-ELMER 399 spectrometer. Proton nuclear magnetic resonance spectra were obtained at 400 MHz (Dr KAN's prototype - ORSAY -Université Parıs-Sud, France). ¹³C NMR spectra were recorded at 25.2 MHz using a VARIAN CFT.20 or a VARIAN XL.100 spectrometer operating in the Fourier transform mode. The bidimensional NMR spectra were carried out with a BRUKER WM.400. Chemical shifts parts per million (δ) downfield from are reported ın tetramethylsilane as the internal standard. Coupling constants (J) are given in Hertz (Hz) with the following abreviations for splitting patterns : s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Melting points were determined on a BUCHI melting point apparatus and are uncorrected. Column chromatography was performed on 230-400 Mesh MERCK silica gel 60. Irradiations were carried out in acetone as the solvent under argon by using 150 W HANAU lamp and a pyrex filter (λ > 290 nm). The reaction was followed by U.V. absorption of the starting material (TLC silica gel 60 PF 254 MERCK) ; spots were detected by spraying with 50% H₂SO₄, followed by heating. Acetone was purified by distillation from KMnO4. The force field computations were performed on a NAS 9080 computer. The program used is based on Allinger's MM₂ version interfaced with graphic software.

- <u>Ketone 7</u> (photocycloaddition of acetylene to α,β -unsaturated ketone 3)

A solution of 3 (500 mg) in purified acetone (250 ml) was purged with argon for 0.5 hours in a photoreaction vessel. Acetylene was dissolved in the acetone solution of 3 at -15°C (\simeq 15 ml) and then irradiated with a TQ 150 HANAU high pressure Hg lamp through a pyrex filter for 15 hours at -15°C. Concentration to dryness gave 600 mg of a crude product which 235

was purified by flash column chromatography using a mixture of pentane/ether : 4/1 v/v as eluent to give ketone 7 (7) (310 mg), (62% yield), m.p. = $76-77^{\circ}\text{C}$; IR (KBr) : 3050, 1695, 815, 790, 735 and 725 cm⁻¹; ¹H NMR (CDCl₃) : δ 6.59 (d, J 2.5, 1H, H-16) ; 6.04 (q, J 2.5 and 1.5, 1H, H-15) ; 2.95 (broad s 1/2 W : 4.5 Hz, 1H, H-14) ; 0.89 (s, 9H, 2 Me-4 and Me-10). Anal. Calc. for $C_{19}H_{28}O$: C, 83.77; H, 10.36. Found : C, 83.70; H, 10.40.

- Alcohols 8a and 8b

A solution of ketone 7 (520 mg) in 20 ml of dry diethylether) was added dropwise at 0°C to a solution of CH_3MgI in 40 ml dry diethylether (prepared from Mg (1.35 mg) and CH_3I (5 ml), with stirring overnight at room temperature. Then a saturated NH₄Cl aq. (5ml) was added at 0°C to destroy the reagent. The solvent was extracted with diethylether. The combined ether extracts were washed with a saturated NaCl aq., dried and evaporated. The crude mixture (500 mg) whose constituents were separated by TLC on silica gel +4% AgNO₃ with pentane/ether : 6/4 v/v mixture as eluent affording 8a (13-OH α) 250 mg, 8b (13-OH β) 180 mg.

<u>8a</u> m.p. = $170-172^{\circ}$ C, Rf : 0.4 (pentane/ether 7/3). IR (CCl₄) : 3610, 3040 cm⁻¹ ; ¹H NMR (CDCl₃) : δ 6.38 (d, J 2.5, 1H, H-16) ; 6.09 (q, J 2.5 and 1.5, 1H, H-15) ; 2.25 (broad s 1/2 W : 4 Hz, 1H, H-14) ; 1.27 (s, 3H, Me-13) and 0.85 (s, 9H, 2 Me-4 and Me-10). Mass spectra (CI/isobutane) : MH⁺ (m/z 289, 22.5%) ; [MH-H₂O]⁺ (m/z 271, 70%) (18). Anal. Calc. for C₂₀H₃₂O : C, 83.86 ; H, 10.56. Found : C, 83.15 ; H, 11.03.

<u>8b</u> m.p. = $87-89^{\circ}$ C, Rf : 0.6 (pentane/ether 1/1). IR (CCl₄) : 3610, 3040 cm⁻¹ ; ¹H NMR (CDCl₃) : δ 6.29 (d, J 2.5, 1H, H-16) ; 5.84 (q, J 2.5 and 1.5, 1H, H-15) ; 2.18 (broad s 1/2 W : 4 Hz, 1H, H-14) ; 1.12 (s, 3H, Me-13) and 0.84 and 0.85 (s, 9H, 2 Me-4 and Me-10). Mass spectra (CI/isobutane) : MH⁺ (m/z 289, 4.3%) ; [MH-H₂O]⁺ (m/z 271, 88%) (18). Anal. Calc. for C₂₀H₃₂O : C, 83.86 ; H, 10.56. Found : C, 83.07 ; H, 11.09.

- Alcohols 9a* and 9b*

<u>8b</u> (165 mg) was deuterated (2H₂ gas) in benzene (10 ml) with RhCl (PPh₃)₃ (cat.). The mixture solution was evaporated and chromatographed on a column of silica gel (pentane/ether : 7/3 v/v) to give 145 mg of <u>9b</u> (90% yield).

<u>9b</u>^{*} m.p. = 93-95°C, Rf : 0.5 (pentane/ether 7/3). IR (CCl₄) : ν_{OH} : 3580, 3400, ν_{C-D} : 2180 cm⁻¹ ; ¹H NMR (CDCl₃) : δ 2.15 (broad d, J 9, 1H, H-16) ; 1.90 (m, 1H, H-7) ; 1.77 (d, J 9, 1H, H-15) ; 1.67 (broad s, 1H, H-14) ; 1.08 (s, 3H, Me-13) ; 0.73 and 0.84 (2s, 9H, 2 Me-4 and Me-10). Mass spectra (CI/1sobutane) : MH⁺ (m/z 292, 5%) ; [MH-H₂O]⁺ (m/z 275, 85%). ¹³C NMR (CDCl₃) : C-1 38.5, C-2 18.4, C-3 42.3, C-4 33.2, C-5 56.8, C-6 19.3, C-7 42.6, C-8 42.3, C-9 50.5, C-10 38.5, C-11 18.0, C-12 34.7, C-13 70.3, C-14 50.9, C-15-D 17.2, C-16-D 28.4, C-17 31.2, C-18 33.6, C-19 21.7, C-20 14.3.

The same procedure was applied to $\underline{8a}$ to produce $\underline{9a}^*$ (yield 90%)

<u>9a</u>^{*} m.p. = 135-137°C, Rf : 0.4 (pentane/ether 7/3). IR (CCl₄) : ν_{OH} : 3580, 3400, ν_{C-D} : 2180 cm⁻¹ ; ¹H NMR (CDCl₃) : δ 1.20 (s, 3H, Me-13) ; 0.73 and 0.84 (2s, 9H, 2 Me-4 and Me-10). Mass spectra (CI/1sobutane) : MH⁺ (m/z 292, 5%) ; [MH-H₂O]⁺ (m/z 275, 85%). ¹³C NMR (CDCl₃) : C-1 38.4, C-2 18.3, C-3 42.2, C-4 33.2, C-5 56.8, C-6 18.9, C-7 43.3, C-8 40.8, C-9 52.2, C-10 38.5, C-11 18.1, C-12 30.7, C-13 73.0, C-14 48.1, C-15-D 16.9, C-16-D 27.0, C-17 27.7, C-18 33.5, C-19 21.5, C-20 13.8.

- <u>Rearranged alcohols 10a* and 10b</u>*

A solution of $\underline{9a}^*$ or $\underline{9b}^*$ (130 mg) in 14 ml of formic acid was stirred at room temperature under an inert atmosphere overnight. Evaporation of the formic acid gave 134 mg of a formate compound which was reduced by LiAlH₄ (160 mg) in dry ether (5 ml) at room temperature (1 hour). The mixture solution was, then, hydrolysed at 0°C with successively, water (0.2 ml), aq. NaOH (15%) (0.2 ml) and water (0.3 ml). The mixture was treated with ether. After filtration (MgSO₄) and evaporation of ether, a cristalline alcohol $10a^*$ (or a mixture of $10a^* + 10b^*$) was obtained (115 mg, 88% yield).

- <u>10a</u>* m.p. : 113-115°C ; mixture of <u>10a</u>* + <u>10b</u>* m.p. : 106-109°C. $\{\alpha\}_{D} = -6^{\circ}$ (C=0.74). IR (CCL₄) : 3605, 3470, 2180 cm⁻¹. ¹H NMR (CDCl₂) : δ 2.89 (s, 1H, H-14) ; 0.92 (s, 6H, Me-17 and Me-20) ; 0.83 (s, 3H, Me-18) ; 0.78 (s, 3H, Me-19). ²H NMR (CHCl₃) $10a^*$: δ 1.20 and 0.96 (broad 2s, 2D). $10a^*$ + $10b^*$: major signals : δ 1.20 and 0.96 (broad 2s, 2D), minor signals, <5% : δ 1.11 and 1.06 (broad 2s, 2D). 13 C NMR of $10a^*$ (CDCl₃) : C-1 39.7, C-2 18.4, C-3 41.9, C-4

33.2, C-5 55.8, C-6 19.2, C-7 39.4, C-8 45.2, C-9 46.7, C-10 37.3, C-11 19.8, C-12 31.8, C-13 40.0, C-14 83.7, C-15-D 32.0, C-16-D 29.3, C-17 24.9, C-18 33.6, C-19 21.9, C-20 15.4.

REFERENCES

- 1. Edwards, O.E.; Rosich, R.S., Can. J. Chem. 1968, 46, 1113.
- Edwards, O.E.; Mootoo, B.S., Can. J. Chem. 1969, 47, 1191.
 Wenkert, E.; Kumazawa, Z., Chem. Com. 1968, 140.
- 4. Fourrey, J.L.; Polonsky, J.; Wenkert, E., J. Chem. Soc. D 1969, 714.
- 5. Hall, S.F.; Oehlschlager, A.C., J. Chem. Soc. D 1969, 1157.
- 6. Lazare, S., These ès-Sciences Physiques, Universite Paris-Sud, Orsay, Avril 1977.
- 7. Do Khac Manh, D.; Fetizon, M.; Flament, J.P., Tetrahedron **1975**, *31*, 1297.
- 8. Khan, M.M.T.; Martell, A.E., "Homogeneous Catalysis by Metal Complexe", vol. 1, Academic Press, New York and London 1974, p. 46.
- 9. Osborn, J.A.; Jardine, F.H.; Young, J.F.; Wilkinson, G., J. Chem. Soc. A 1966, 1711.

- b. Chem. Soc. A 1900, 1/11.
 Allinger, N.L., J. Am. Chem. Soc. 1977, 99, 8127.
 Allinger, N.L.; Yuh, Y., Q.C.P.E. 1980, 12, 395.
 Karplus, M., J. Am. Chem. Soc. 1963, 85, 2870.
 Karplus, M., J. Chem. Phys. 1959, 30, 11.
 Prevost, C., Thèse es Sciences Physiques, Universite Paris-Sud, Orsay, Juin 1987.
 Sternbell, S. Quartely Peyrov (London) 1960, 22, 226.
- Sternhell, S., Quartely Review (London) 1969, 23, 236. 15.
- Bax, A., "Two dimensional Nuclear Magnetic Resonance in Liquids", Delft University Press, R. Reidel Publishing 16. Company 1982.
- Bernassau, J.M., Personal communication. 17.
- 18. Bastard, J.; Do Khac Manh, D.; Fetizon, M.; Tabet, J.C., ; Fraisse D., J.C.S. Perkin II 1981, 1591.
- 19. Do Khac, M.; Fetizon, M.; Lazare, S.; Grant, P.K.; Nicholls, M.J.; Liau, M.T.L.; Francis, M.J.; Poisson, J.; Bernassau, J.M.; Roque, N.F.; Wovkulich, P.M.; Wenkert, E., Tetrahedron 1981, 37, 2371-2374.

238